

MODÈLES EXPÉRIMENTAUX : NOUVEAUX HORIZONS POUR LES MALADIES RARES ENDOCRINIENNES

MARDI 5 DÉCEMBRE 2023

FILIÈRE MALADIES RARES ENDOCRINIENNES

MODÈLES EXPÉRIMENTAUX : NOUVEAUX HORIZONS POUR LES MALADIES RARES ENDOCRINIENNES

QUEL MODÈLE EXPÉRIMENTAL POUR COMPRENDRE LA PHYSIOPATHOLOGIE DE LA PUBERTÉ PRÉCOCE CENTRALE :

RÔLE ET MÉCANISMES D'ACTION DE MKRN3 ?

Lydie Naulé, PhD

IBPS-NPS, Neuroplasticité des Comportements de Reproduction CNRS UMR 8246, INSERM UMRS 1130, Sorbonne Université, Paris

Dr. Ursula Kaiser laboratory Division of Endocrinology, Diabetes and Hypertension - Brigham and Women's Hospital, Harvard Medical School.

PUBERTY

Male Female -2 SD -1 SD Mean +1 SD +2 SD Precocious Delayed Growth spurt Puberty Puberty Growth spurt Number F >> MM >> Fof Increase in lean muscle mass Breast development Children Changes in body Changes in body composition composition م Increase in penile length Age at Onset of Puberty and first ejaculation Pubic hair Menarche Pubic hair Increase in fat mass Precocious Delayed Testicular enlargement Puberty Puberty 13 yo girls < 8 yo girls

Physical changes and secondary sexual characteristics that appear during pubertal development.

14 yo boys < 9 yo boys

HYPOTHALAMIC-PITUITARY-GONADAL AXIS

Abreu et Kaiser, 2016

Adapted from Palmert and Boepple., 2001

Established genetic basis of common genetic variants of pubertal timing from genome wide association studies (GWAS), conditions of GnRH deficiency (CHH and KS), precocious puberty and delayed puberty and their overlap. Activating and inactivating mutations in KISS1 and KISS1R cause the opposite phenotypes, precocious puberty and CHH, respectively.

Established genetic basis of common genetic variants of pubertal timing from genome wide association studies (GWAS), conditions of GnRH deficiency (CHH and KS), precocious puberty and delayed puberty and their overlap. Activating and inactivating mutations in KISS1 and KISS1R cause the opposite phenotypes, precocious puberty and CHH, respectively.

E3 ubiquitin ligase activity

RNA-binding activity

- Intronless gene
- Maternally imprinted (expressed only from the paternally inherited allele)

- Maternally imprinted

(expressed only from the paternally inherited allele)

Abreu, Dauber et al., 2013 Macedo, Abreu et al., 2014

Mkrn3 Arcuate Nucleus, Male Mice

Abreu et al., 2020 Abreu, Dauber et al., 2013

Adapted from Palmert and Boepple., 2001

MECHANISMS OF ACTION OF MKRN3 ?

Abreu et Kaiser., 2016

AIM

AIM

- Elucidate the mechanism of action of MKRN3 in puberty initiation within the hypothalamus using both *in vitro and in vivo* approaches.

HYPOTHALAMIC DIFFERENTIATION OF MKRN3 DEFICIENT AND WT ISOGENIC hiPSCs

HYPOTHALAMIC DIFFERENTIATION OF MKRN3 DEFICIENT AND WT ISOGENIC hiPSCs

HYPOTHALAMIC DIFFERENTIATION OF MKRN3 DEFICIENT AND WT ISOGENIC hiPSCs

TRANSCRIPTOME ANALYSIS BY RNA-SEQUENCING – DIFFERENTIAL EXPRESSION

176 genes upregulated, 228 downregulated in the MKRN3-deficient compared to WT cells.

TRANSCRIPTOME ANALYSIS BY RNA-SEQUENCING – DIFFERENTIAL EXPRESSION

TRANSCRIPTOME ANALYSIS BY RNA-SEQUENCING – FUNCTIONAL ANALYSIS

53 Gene Ontology (GO) pathways were significantly different between the MKRN3-deficient and WT hypothalamic neurons.

Taxis/Chemotaxis Extracellular matrix organization

Axon development Axonogenesis Axon guidance Neuron projection guidance Synapse organization

Forebrain development Forebrain generation of neurons Forebrain neuron differentiation

Naulé et al., 2023

Mkrn3 protein expression in the mediobasal hypothalamus of postnatal day 10 female mice

Mkrn3+/- KO

Mkrn3+/+ WT

Mkrn3 protein expression in the arcuate nucleus postnatal day 10 mice

EARLY PUBERTY ONSET IN FEMALE *Mkrn3* KO MICE

10-

0

Mkrn3^{+/+} Mkrn3^{+/-}

Age of vaginal opening

Mkrn3^{+/+} WT *Mkrn3*^{+/-} KO MRcn3

Naulé et al., 2023

TENDENCY TOWARDS EARLY PUBERTAL ONSET IN MALE *Mkrn3* KO MICE

Mkrn3^{+/+} WT

Age of preputial separation

TENDENCY TOWARDS EARLY PUBERTAL ONSET IN MALE *Mkrn3* KO MICE

Mkrn3^{+/+} WT

Age of preputial separation

Mkrn3 deletion is associated with accelerated puberty onset in female mice and a tendency towards early puberty in male mice.

Body weight

NORMAL CYCLICITY AND FERTILITY IN *Mkrn3* KO MICE

Mkrn3^{+/-} KO

MKn3

Female		Male	
Mkrn3 ^{w⊤}	Mkrn3 ^{KO}	Mkrn3 ^{w⊤}	Mkrn3 ^{KO}
23.3 ± 0.3	26.3 ± 1.9	23.3 ± 0.3	26.3 ± 3.3
3.7 ± 0.3	4.0 ± 0.6	3.7 ± 0.3	4 ± 0.0
18.3 ± 2.3	20.3 ± 1.5	18.3 ± 2.3	19.7 ± 1.86
5.00 ± 0.3	5.6 ± 0.6	5.00 ± 0.3	5.00 ± 0.5
	Fen Mkrn3 ^{WT} 23.3 ± 0.3 3.7 ± 0.3 18.3 ± 2.3 5.00 ± 0.3	Female Mkrn3 ^{WT} Mkrn3 ^{KO} 23.3 ± 0.3 26.3 ± 1.9 3.7 ± 0.3 4.0 ± 0.6 18.3 ± 2.3 20.3 ± 1.5 5.00 ± 0.3 5.6 ± 0.6	Female Mail $Mkrn3^{WT}$ $Mkrn3^{KO}$ $Mkrn3^{WT}$ 23.3 ± 0.3 26.3 ± 1.9 23.3 ± 0.3 3.7 ± 0.3 4.0 ± 0.6 3.7 ± 0.3 18.3 ± 2.3 20.3 ± 1.5 18.3 ± 2.3 5.00 ± 0.3 5.6 ± 0.6 5.00 ± 0.3

KISSPEPTIN NEURONS: CRITICAL FOR PUBERTY ONSET AND FERTILITY

In human

Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54

Nicolas de Roux*^**, Emmanuelle Genin§, Jean-Claude Carel[¶], Fumihiko Matsuda^{||}, Jean-Louis Chaussain[¶], and Edwin Milgrom*

PNAS September 16, 2003

KISSPEPTIN NEURONS: CRITICAL FOR PUBERTY ONSET AND FERTILITY

In human

Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54

Nicolas de Roux*^{†‡}, Emmanuelle Genin[§], Jean-Claude Carel[¶], Fumihiko Matsuda^{||}, Jean-Louis Chaussain[¶], and Edwin Milgrom*

| PNAS | September 16, 2003

In primates

The role of *KiSS-1* in the regulation of puberty in higher primates

Tony M Plant

Department of Cell Biology and Physiology and Obstetrics. Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, 3550 Terrace Street, Rm 828 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA

European Journal of Endocrinology (2006)

In mice

Hypogonadotropic hypogonadism in mice lacking a functional *Kiss1* gene

Xavier d'Anglemont de Tassigny*, Lisa A. Fagg*, John P. C. Dixon[†], Kate Day[†], Harry G. Leitch*, Alan G. Hendrick[†], Dirk Zahn[†], Isabelle Franceschini[‡], Alain Caraty[‡], Mark B. L. Carlton[†], Samuel A. J. R. Aparicio[§], and William H. Colledge*¹

PNAS | June 19, 2007 | vol. 104 | no. 25

The GPR54 Gene as a Regulator of Puberty

Stephanie B. Seminara, M.D., Sophie Messager, Ph.D., Emmanouella E. Chatzidaki, B.Sc., Rosemary R. Thresher, Ph.D.,

N ENGL J MED 349;170CTOBER 23, 2003

TAC3 and *TACR3* mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction

A Kemal Topaloglu^{1,7}, Frank Reimann^{2,7}, Metin Guclu³, Ayse Serap Yalin⁴, L Damla Kotan⁵, Keith M Porter⁶, Ayse Serin⁵, Neslihan O Mungan¹, Joshua R Cook⁶, Mehmet N Ozbek¹, Sazi Imamoglu³, N Sema Akalin⁴, Bilgin Yuksel¹, Stephen O'Rahilly⁶ & Robert K Semple⁶

VOLUME 41 | NUMBER 3 | MARCH 2009 | NATURE GENETICS

Mkrn3^{+/+} WT

GnRH expression in the preoptic area (rPOA)

Mkrn3^{+/+} WT

RP3V **Kisspeptin** Kisspeptin neuron rPOA GnRH 0 **Kisspeptin** ARC J GnRH 000

GnRH expression in the preoptic area (rPOA)

Kiss1 expression in the arcuate nucleus (ARC)

Kiss1 expression in the preoptic area (POA)

*Mkrn*3^{+/+} WT

*Mkrn*3^{+/+} WT

Tac3 expression in the arcuate nucleus (ARC)

GnRH, Kiss1 and Tac3 mRNA expression in the POA and/or ARC. Naulé et al., 2023

Mkrn3^{+/-} KO

Mkrn3^{+/+} WT

GnRH neurons – PND10

Naulé et al., 2023

Kisspeptin neurons ARC

PND25

•.

Mkrn3^{WT} Mkrn3^{KO}

3V

3V

Naulé et al., 2023

Mkrn3 deletion is associated with an increase in the expression of Neurokinin B in the ARC.

CHANGES IN GNRH NEURONAL MORPHOLOGY ACROSS PUBERTY

- Prepubertal GnRH neurons have a much more complex dendritic arbor compared to GnRH neurons from mature mice.

- GnRH neurons from mature mice have approximately twice as many somatic/dendritic spines compared to prepubertal GnRH cells

CHANGES IN GNRH NEURONAL MORPHOLOGY ACROSS PUBERTY

- Prepubertal GnRH neurons have a much more complex dendritic arbor compared to GnRH neurons from mature mice.

- GnRH neurons from mature mice have approximately twice as many somatic/dendritic spines compared to prepubertal GnRH cells

GnRH neuron morphology (PND15)

GnRH neuron morphology (PND15)

Spine density - ARC (PND15)

Mkrn3^{+/+} WT

GnRH neuron morphology (PND15)

Mkrn3 deletion is associated with an increase in dendritic spine density in the arcuate nucleus during postnatal development.

IDENTIFICATION OF OTHER TARGETS OF MKRN3 ACTION – PROTEOMIC ANALYSIS

Proteomic analysis of the hypothalamic arcuate nucleus of *Mkrn3*^{+/-}KO and *Mkrn3*^{+/+} WT P15 male and female mice.

Figure 1. Procedure schematic for using the Thermo Scientific TMT10plex Label Reagents.

In collaboration with Dr. Steven Gygi laboratory

IDENTIFICATION OF OTHER TARGETS OF MKRN3 ACTION – PROTEOMIC ANALYSIS

Volcano plot indicating significantly altered proteins identified according to their statistical P-value (y-axis) and their relative abundance ratio (log2 fold change) between Mkrn3 WT and Mkrn3 KO animals.

IGF2BP1 PROTEIN INTERACTS WITH MKRN3 – INTERACTOME STUDIES

Mkrn3 interacts with lgf2bp1 and inhibits its protein expression in the arcuate nucleus during postnatal development.

Naulé et al., 2023

IGF2BP1 PROTEIN INTERACTS WITH MKRN3 – INTERACTOME STUDIES

Mkrn3 interacts with lgf2bp1 and inhibits its protein expression in the arcuate nucleus during postnatal development.

Naulé et al., 2023

IGF2BP1 belong to a conserved family of **mRNA binding (RBPs) protein.**

IGF2BP1 required for the transport of certain mRNA that play essential roles in **embryogenesis**, **carcinogenesis** and chemoresistance, by affecting their stability, translatability or localization.

IGF2BP1 was identified as a key player in the spatiotemporal control of mRNA localization, a key determinant of **neuronal development**, **cytoskeletal remodeling, cell adhesion** and **synaptic function**.

- MRKN3 deletion in hiPS-derived hypothalamic neuron is associated with differences in gene expression between MKRN3-deficient and WT cells in factors involved in extracellular matrix organization, cell adhesion, and axon guidance pathways, which together control hypothalamic development and plasticity.
- Mkrn3 deletion is associated with accelerated puberty onset in female mice and a tendency towards early puberty in male mice.
- *Mkrn3* deletion in *Mkrn3*^{+/-} KO female mice is associated with an increase in expression of Neurokinin B in the ARC at PND25.
- Mkrn3 deletion in Mkrn3^{+/-} KO female mice is associated with an increase in dendritic spine density in the arcuate nucleus during postnatal development.
- Mkrn3 interacts with lgf2bp1 and inhibits its protein expression in the arcuate nucleus during postnatal development.

THANKS

Kaiser laboratory, BWH, HMS

Ursula Kaiser Rona Carroll Ana Paula Abreu Alessandra Mancini Sidney Alcantera Perreira Han Kyeol Kim Joy Liang **Stephanie Roberts** Melissa Magnuson Le Min Krist Hausken Victor Vaz JC Magnotto Delanie Macedo Luigi Maione Yongbhum Song Morgan Buchanan Cynara Matos

Metabolic Research Laboratories, University of Cambridge

Florian Merkle

Department of Cell Biology, HMS

Steven Gygi Brandon Gassaway John Lydeard

IBPS-NPS-Team Neuroplasticity of reproductive behaviors

Sakina Mhaouty-Kodja Hélène Pouzet Valérie Messent Caroline Parmentier Elodie Desroziers Thomas Torres Nolwenn Adam Lina Mahiddine

